QCDLoop
One-loop scalar Feynman integrals
Public Member Functions | List of all members
ql::Box< TOutput, TMass, TScale > Class Template Reference

The Box integral. More...

#include <box.h>

Inheritance diagram for ql::Box< TOutput, TMass, TScale >:
Inheritance graph
[legend]
Collaboration diagram for ql::Box< TOutput, TMass, TScale >:
Collaboration graph
[legend]

Public Member Functions

 Box ()
 The Constructor.
 
 ~Box ()
 The Destructor.
 
void integral (vector< TOutput > &res, TScale const &mu2, vector< TMass > const &m, vector< TScale > const &p)
 Computes the tadpole integral. More...
 
void B1 (vector< TOutput > &res, TMass const (&Y)[4][4], TScale const &mu2) const
 Divergent box I(0,0,0,0;s12,s23;0,0,0,0) More...
 
void B2 (vector< TOutput > &res, TMass const (&Y)[4][4], TScale const &mu2) const
 Divergent box I(0,0,0,p2;s12,s23;0,0,0,0) More...
 
void B3 (vector< TOutput > &res, TMass const (&Y)[4][4], TScale const &mu2) const
 Divergent box I(0,pd2,0,pq2;s12,s23;0,0,0,0) More...
 
void B4 (vector< TOutput > &res, TMass const (&Y)[4][4], TScale const &mu2) const
 Divergent box I(0,0,pt2,pq2;s12,s23;0,0,0,0) More...
 
void B5 (vector< TOutput > &res, TMass const (&Y)[4][4], TScale const &mu2) const
 Divergent box I(0,pd2,pt2,pq2;s12,s23;0,0,0,0) More...
 
void B6 (vector< TOutput > &res, TMass const (&Y)[4][4], TScale const &mu2) const
 Divergent box I(0,0,m2,m2;s12,s23;0,0,0,m2) More...
 
void B7 (vector< TOutput > &res, TMass const (&Y)[4][4], TScale const &mu2) const
 Divergent box I(0,0,m2,pq2;s12,s23;0,0,0,m2) More...
 
void B8 (vector< TOutput > &res, TMass const (&Y)[4][4], TScale const &mu2) const
 Divergent box I(0,0,pt2,pq2;s12,s23;0,0,0,m2) More...
 
void B9 (vector< TOutput > &res, TMass const (&Y)[4][4], TScale const &mu2) const
 Divergent box I(0,p2,p3,m2;s12,s23;0,0,0,m2) More...
 
void B10 (vector< TOutput > &res, TMass const (&Y)[4][4], TScale const &mu2) const
 Divergent box I(0,p2,p3,p4;s12,s23;0,0,0,m2) More...
 
void B11 (vector< TOutput > &res, TMass const (&Y)[4][4], TScale const &mu2) const
 Divergent box I(0,m3,pt2,m4;s12,s23;0,0,m3,m4) More...
 
void B12 (vector< TOutput > &res, TMass const (&Y)[4][4], TScale const &mu2) const
 Divergent box I(0,m3,pt2,pq2;s12,s23;0,0,m3,m4) More...
 
void B13 (vector< TOutput > &res, TMass const (&Y)[4][4], TScale const &mu2) const
 Divergent box I(0,p2,p3,p4;s12,s23;0,0,m3,m4) More...
 
void B14 (vector< TOutput > &res, TMass const (&Y)[4][4], TScale const &mu2) const
 Divergent box I(m2,m2,m4,m4;s12,s23;0,m2,0,m4) More...
 
void B15 (vector< TOutput > &res, TMass const (&Y)[4][4], TScale const &mu2) const
 Divergent box I(m2,p2,p3,m4;s12,s23;0,m2,0,m4) More...
 
void B16 (vector< TOutput > &res, TMass const (&Y)[4][4], TScale const &mu2) const
 Divergent box I(m2,p2,p3,m4;s12,s23;0,m2,m3,m4) More...
 
- Public Member Functions inherited from ql::Topology< TOutput, TMass, TScale >
 Topology (string name="None")
 Topology<TOutput, TMass>::Topology. More...
 
 Topology (const Topology &obj)
 Topology<TOutput, TMass>::Topology. More...
 
virtual ~Topology ()
 Topology<TOutput, TMass>::~Topology.
 
string const & getName () const
 Get topology name.
 
- Public Member Functions inherited from ql::Tools< TOutput, TMass, TScale >
 Tools ()
 The Constructor.
 
 ~Tools ()
 The Destructor.
 
bool iszero (TMass const &psq) const
 Check for zeros. More...
 
TOutput cLn (TOutput const &z, TScale const &isig) const
 Log of complex argument with explicit sign for imag part. More...
 
TOutput cLn (TScale const &x, TScale const &isig) const
 
TOutput fndd (int const &n, TOutput const &x, TScale const &iep) const
 The fndd function. More...
 
TOutput Lnrat (TOutput const &x, TOutput const &y) const
 Computes the ratio of logs. More...
 
TOutput Lnrat (TScale const &x, TScale const &y) const
 
TMass ddilog (TMass const &x) const
 Computes the dilog function for real argument. More...
 
TOutput denspence (TOutput const &z, TScale const &isig) const
 Spence's function. More...
 
TOutput spencer (TOutput const &zrat1, TOutput const &zrat2, TScale const &ieps1, TScale const &ieps2) const
 Spence's function for ratio arguments. More...
 
TOutput xspence (TOutput const (&z1)[2], TScale const (&im1)[2], TOutput const &z2, TScale const &im2) const
 Difference of complex Spence's function. More...
 
TOutput cspence (TOutput const &z1, TScale const &im1, TOutput const &z2, TScale const &im2) const
 Complex Spence's function. More...
 
TOutput Li2omrat (TScale const &x, TScale const &y) const
 Expression for dilog(1-(x-i*ep)/(y-i*ep)). More...
 
TOutput Li2omrat (TOutput const &x, TOutput const &y, TScale const &ieps1=-1, TScale const &ieps2=-1) const
 
TOutput Li2omx2 (TScale const &v, TScale const &w, TScale const &x, TScale const &y) const
 Expression for dilog(1-(v-i*ep)*(w-i*ep)/(x-i*ep)/(y-i*ep)). More...
 
TOutput Li2omx2 (TOutput const &v, TOutput const &w, TOutput const &x, TOutput const &y, TScale const &ieps1=-1, TScale const &ieps2=-1) const
 
TOutput cLi2omx2 (TOutput const &z1, TOutput const &z2, TScale const &ieps1=-1, TScale const &ieps2=-1) const
 
TOutput Li2omx (TMass const &x1, TMass const &x2, TScale const &ieps1, TScale const &ieps2) const
 Calculate Li[2](1-(x1+ieps1)*(x2+ieps2)) More...
 
TOutput cLi2omx3 (TOutput const &z1, TOutput const &z2, TOutput const &z3, TScale const &ieps1, TScale const &ieps2, TScale const &ieps3) const
 Calculate Li[2](1-(z1+ieps1)*(z2+ieps2)*(z3+ieps3)) More...
 
TOutput L0 (TMass const &x, TMass const &y) const
 
TOutput L1 (TMass const &x, TMass const &y) const
 
TOutput R3int (TOutput const &p, TOutput const &s1, TOutput const &s2, TOutput const &t1) const
 
TOutput R3int (TOutput const &p, TOutput const &s1, TOutput const &s2, TOutput const &t1, TOutput const &t2, TOutput const &t3, TOutput const &t4) const
 
TOutput R2int (TOutput const &a, TOutput const &b, TOutput const &y0) const
 
TOutput Rint (TOutput const &y, TOutput const &z, TScale const &ieps) const
 
void R (TOutput &r, TOutput &d, TOutput const &q) const
 Tools<TOutput, TMass, TScale>::R. More...
 
TOutput Zlogint (TOutput const &z, TScale const &ieps) const
 Tools<TOutput, TMass, TScale>::qlZlogint. More...
 
TOutput ltspence (int const &i_in, TOutput const &z_in, TScale const &s) const
 
TOutput li2series (TOutput const &z, TScale const &isig) const
 
TOutput ltli2series (TOutput const &z1, TScale const &s) const
 
TOutput eta2 (TOutput const &a, TOutput const &b) const
 
TOutput eta3 (TOutput const &a, TOutput const &b, TOutput const &c) const
 
TOutput eta5 (TOutput const &a, TOutput const &b, TOutput const &c, TOutput const &d, TOutput const &e) const
 
TOutput xetatilde (TOutput const (&z1)[2], TScale const (&im1)[2], TOutput const &z2, TScale const &im2, TOutput const (&l1)[2]) const
 
TOutput xeta (TOutput const (&z1)[2], TScale const (&im1)[2], TOutput const &z2, TScale const &im2, TScale const &im12, TOutput const (&l1)[2]) const
 
int eta (TOutput const &z1, TScale const &s1, TOutput const &z2, TScale const &s2, TScale const &s12) const
 
int etatilde (TOutput const &c1, TScale const &im1x, TOutput const &c2, TScale const &im2x) const
 
void kfn (TOutput(&res)[3], TScale &ieps, TMass const &xpi, TMass const &xm, TMass const &xmp) const
 The K-function. More...
 
void solveabc (TMass const &a, TMass const &b, TMass const &c, TOutput(&z)[2]) const
 Solution of the quadratic equation. More...
 
void solveabcd (TOutput const &a, TOutput const &b, TOutput const &c, TOutput const &d, TOutput(&z)[2]) const
 Solution of the quadratic equation passing the discriminant. More...
 
void solveabcd (TOutput const &a, TOutput const &b, TOutput const &c, TOutput(&z)[2]) const
 
void ratgam (TOutput &ratp, TOutput &ratm, TScale &ieps, TMass const &p3sq, TMass const &m3sq, TMass const &m4sq) const
 Ratio function. More...
 
void ratreal (TMass const &si, TMass const &ta, TMass &rat, TScale &ieps) const
 Ratio function. More...
 
- Public Member Functions inherited from ql::LRUCache< size_t, vector< TOutput > >
 LRUCache (int const &size=1)
 LRUCache constructor. More...
 
 LRUCache (const LRUCache &obj)
 
void setCacheSize (int const &size)
 Set the Cache size.
 
int const & getCacheSize () const
 Get the Cache size.
 
void store (size_tconst &key, vector< TOutput >const &value)
 Store the cached data.
 
bool get (size_tconst &key, vector< TOutput > &out)
 Get the cached data.
 

Additional Inherited Members

- Public Types inherited from ql::LRUCache< size_t, vector< TOutput > >
typedef std::pair< size_t, vector< TOutput > > key_value_pair_t
 
typedef std::list< key_value_pair_t >::iterator list_iterator_t
 
- Protected Member Functions inherited from ql::Topology< TOutput, TMass, TScale >
bool checkCache (TScale const &, vector< TMass > const &, vector< TScale > const &)
 < Check stored cached results More...
 
void storeCache (TScale const &, vector< TMass > const &, vector< TScale > const &)
 Topology<TOutput, TMass>::storeCache.
 
- Protected Attributes inherited from ql::Topology< TOutput, TMass, TScale >
string _name
 
size_t _key
 
TScale _mu2
 
vector< TMass > _m
 
vector< TScale > _p
 
vector< TOutput > _val
 
ContainerHasher< TMass, TScale > * _ch
 
- Protected Attributes inherited from ql::Tools< TOutput, TMass, TScale >
TScale _pi
 
TScale _pi2
 
TScale _pio3
 
TScale _pio6
 
TScale _pi2o3
 
TScale _pi2o6
 
TScale _pi2o12
 
TScale _zero
 
TScale _half
 
TScale _one
 
TScale _two
 
TScale _three
 
TScale _four
 
TScale _five
 
TScale _six
 
TScale _ten
 
TScale _eps
 
TScale _eps4
 
TScale _eps7
 
TScale _eps10
 
TScale _eps14
 
TScale _eps15
 
TScale _xloss
 
TScale _neglig
 
TScale _reps
 
TOutput _2ipi
 
TOutput _ipio2
 
TOutput _ipi
 
TOutput _czero
 
TOutput _chalf
 
TOutput _cone
 
TOutput _ctwo
 
TOutput _cthree
 
TOutput _cfour
 
TOutput _ieps
 
TOutput _ieps2
 
TOutput _ieps50
 

Detailed Description

template<typename TOutput = complex, typename TMass = double, typename TScale = double>
class ql::Box< TOutput, TMass, TScale >

The Box integral.

Parses automatically the topology and computes the integral

Member Function Documentation

template<typename TOutput , typename TMass , typename TScale >
void ql::Box< TOutput, TMass, TScale >::B1 ( vector< TOutput > &  res,
TMass const (&)  Y[4][4],
TScale const &  mu2 
) const

Divergent box I(0,0,0,0;s12,s23;0,0,0,0)

The integral is defined as:

\[ I_4^{D=4-2\epsilon}(0,0,0,0;s_{12},s_{23};0,0,0,0) = \frac{\mu^{2\epsilon}}{s_{12}s_{23}}\left[ \frac{2}{\epsilon^2}\left( (-s_{12}-i\epsilon)^{-\epsilon} + (-s_{23}-i \epsilon)^{-\epsilon} \right) - \ln^2 \left( \frac{-s_{12}-i\epsilon}{-s_{23}-i\epsilon} \right) - \pi^2 \right] + \mathcal{O}(\epsilon) \]

Implementation of the formulae from Bern et al. [4].

Parameters
resoutput object res[0,1,2] the coefficients in the Laurent series
mu2the energy scale squared.
template<typename TOutput , typename TMass , typename TScale >
void ql::Box< TOutput, TMass, TScale >::B10 ( vector< TOutput > &  res,
TMass const (&)  Y[4][4],
TScale const &  mu2 
) const

Divergent box I(0,p2,p3,p4;s12,s23;0,0,0,m2)

The integral is defined as:

\[ I_4^{D=4-2\epsilon}(0,p_2^2,p_3^2,p_4^2;s_{12},s_{23};0,0,0,m^2) = \frac{1}{(s_{12}s_{23}-m^2 s_{12} - p_2^2 p_4^2 + m^2 p_2^2)} \\ \left[ \frac{1}{\epsilon} \ln \left( \frac{(m^2-p_4^2) p_2^2}{(m^2-s_{23})s_{12})} \right) + {\rm Li}_2 \left( 1 + \frac{(m^2-p_3^2)(m^2-s_{23})}{p_2^2 m^2} \right) - {\rm Li}_2 \left( 1 + \frac{(m^2-p_3^2)(m^2-p_4^2)}{s_{12} m^2} \right) \\ +2 {\rm Li}_2 \left( \right) - 2 {\rm Li}_2 \left( 1-\frac{p_2^2}{s_{12}} \right) + 2 {\rm Li}_2 \left( 1-\frac{p_2 (m^2-p_4^2)}{s_{12}(m^2-s_{23})} \right) \\ +2 \ln \left( \frac{\mu m}{m^2-s_{23}} \right) \ln \left( \frac{(m^2-p_4^2) p_2^2}{(m^2-s_{23}) s_{12}} \right) \right] + \mathcal{O}(\epsilon) \]

Implementation of the formulae from Ellis et al. [8].

Parameters
resoutput object res[0,1,2] the coefficients in the Laurent series
mu2the energy scale squared.
template<typename TOutput , typename TMass , typename TScale >
void ql::Box< TOutput, TMass, TScale >::B11 ( vector< TOutput > &  res,
TMass const (&)  Y[4][4],
TScale const &  mu2 
) const

Divergent box I(0,m3,pt2,m4;s12,s23;0,0,m3,m4)

The integral is defined as:

\[ I_4^{D=4-2\epsilon}(0,m_3^2,p_3^2,m_4^2;s_{12},s_{23};0,0,m_3^2,m_4^2) = \frac{1}{(m_3^2-s_{12})(m_4^2 - s_{23})} \\ \left[ \frac{1}{\epsilon^2} - \frac{1}{\epsilon} \ln \left( \frac{(m^2-s_{23})(m_3^2-s_{12})}{m_3 m_4 \mu^2} \right) + 2 \ln \left( \frac{m_3^2-s_{12}}{m_3 \mu} \right) \ln \left( \frac{m_4^2-s_{23}}{m_4 \mu} \right) \\ - \frac{\pi^2}{2} + \ln^2 \frac{m_3}{m_4} - \frac{1}{2} \ln^2 \left( \frac{\gamma^+_{34}}{\gamma^+_{34} - 1} \right) - \frac{1}{2} \ln \left( \frac{\gamma^-_{34}}{\gamma^-_{34} - 1} \right) \right] + \mathcal{O}(\epsilon) \]

Implementation of the formulae from Ellis et al. [8].

Parameters
resoutput object res[0,1,2] the coefficients in the Laurent series
mu2the energy scale squared.
template<typename TOutput , typename TMass , typename TScale >
void ql::Box< TOutput, TMass, TScale >::B12 ( vector< TOutput > &  res,
TMass const (&)  Y[4][4],
TScale const &  mu2 
) const

Divergent box I(0,m3,pt2,pq2;s12,s23;0,0,m3,m4)

The integral is defined as:

\[ I_4^{D=4-2\epsilon}(0,m_3^2,p_3^2,p_4^2;s_{12},s_{23};0,0,m_3^2,m_4^2) = \frac{1}{(s_{12}-m_3^2)(s_{23}-m_4^2)} \\ \left[ \frac{1}{2 \epsilon^2} - \frac{1}{\epsilon} \ln \left( \frac{(m_4^2-s_{23})(m_3^2-s_{12})}{(m_4-p_4^2) m_3 \mu} \right) + 2 \ln \left( \frac{m_4^2-s_{23}}{m_3 \mu} \right) \ln \left( \frac{m_3^2-s_{12}}{m_3 \mu} \right) \\ - \ln^2 \left( \frac{m_4^2-p_4^2}{m_3 \mu}\right) -\frac{\pi^2}{12} + \ln \left( \frac{m_4^2-p_4^2}{m_3^2-s_{12}} \right) \ln \left( \frac{m_4^2}{m_3^2} \right) - \frac{1}{2} \ln^2 \left( \frac{\gamma^+_{34}}{ \gamma^+_{34}-1 }\right) - \frac{1}{2} \ln^2 \left( \frac{\gamma^-_{34}}{\gamma^-_{34}-1} \right) \\ - 2 {\rm Li}_2 \left( 1 - \frac{(m_4^2-p_4^2)}{(m_4^2-s_{23})} \right) - {\rm Li}_2 \left( 1 - \frac{(m_4-p_4^2) \gamma^+_{43}}{(m_3^2-s_{12})(\gamma^+_{43}-1)} \right)- {\rm Li}_2 \left( 1 - \frac{(m_4-p_4^2) \gamma^-_{43}}{(m_3^2-s_{12})(\gamma^-_{43}-1)} \right) \right] + \mathcal{O}(\epsilon) \]

Implementation of the formulae from Ellis et al. [8].

Parameters
resoutput object res[0,1,2] the coefficients in the Laurent series
mu2the energy scale squared.
template<typename TOutput , typename TMass , typename TScale >
void ql::Box< TOutput, TMass, TScale >::B13 ( vector< TOutput > &  res,
TMass const (&)  Y[4][4],
TScale const &  mu2 
) const

Divergent box I(0,p2,p3,p4;s12,s23;0,0,m3,m4)

The integral is defined as:

\[ I_4^{D=4-2\epsilon}(0,p_2^2,p_3^2,p_4^2;s_{12},s_{23};0,0,m_3^2,m_4^2) = \frac{1}{\Delta} \left[ \frac{1}{\epsilon} \ln \left( \frac{(m_3^2-p_2^2)(m_4^2-p_4^2)}{(m_3^2-s_{12})(m_4^2-s_{23})} \right) \\ - 2 {\rm Li}_2 \left(1-\frac{(m_3^2-p_2^2)}{(m_3^2-s_{12})} \right) - {\rm Li}_2 \left( 1 - \frac{(m_3^2-p_2^2)\gamma^+_{34}}{(m_4^2-s_{23})(\gamma_{34}^+ - 1)} \right) - {\rm Li}_2 \left( 1 - \frac{(m_3^2-p_2^2)\gamma^-_{34}}{(m_4^2-s_{23})(\gamma_{34}^- - 1)} \right) \\ - 2 {\rm Li}_2 \left(1-\frac{(m_4^2-p_4^2)}{(m_4^2-s_{23})} \right) - {\rm Li}_2 \left( 1 - \frac{(m_4^2-p_4^2)\gamma^+_{43}}{(m_3^2-s_{12})(\gamma_{43}^+ - 1)} \right) - {\rm Li}_2 \left( 1 - \frac{(m_4^2-p_4^2)\gamma^-_{43}}{(m_2^2-s_{12})(\gamma_{43}^- - 1)} \right) \\ + 2 {\rm Li}_2 \left(1-\frac{(m_3^2-p_2^2)(m_4^2-p_4^2)}{(m_3^2-s_{12})(m_4^2-s_{23})} \right) + 2 \ln \left( \frac{m_3^2-s_{12}}{\mu^2} \right) \ln \left( \frac{m_4^2-s_{23}}{\mu^2} \right) \\ - \ln^2 \left( \frac{m_3^2-p_2^2}{\mu^2} \right) -ln^2 \left( \frac{m_4^2-p_4^2}{\mu^2} \right) + \ln \left( \frac{m_3^2-p_2^2}{m_4^2-s_{23}} \right) \ln \left( \frac{m_3^2}{\mu^2} \right) + \ln \left( \frac{m_4^2-p_4^2}{m_3^2 - s_{12}} \right) \ln \left( \frac{m_4^2}{\mu^2} \right) \\ -\frac{1}{2} \ln^2 \left( \frac{\gamma_{34}^+}{\gamma_{34}^+-1} \right) -\frac{1}{2} \ln^2 \left( \frac{\gamma_{34}^-}{\gamma_{34}^--1} \right) \right] + \mathcal{O}(\epsilon) \]

Implementation of the formulae from Ellis et al. [8].

Parameters
resoutput object res[0,1,2] the coefficients in the Laurent series
mu2the energy scale squared.
template<typename TOutput , typename TMass , typename TScale >
void ql::Box< TOutput, TMass, TScale >::B14 ( vector< TOutput > &  res,
TMass const (&)  Y[4][4],
TScale const &  mu2 
) const

Divergent box I(m2,m2,m4,m4;s12,s23;0,m2,0,m4)

The integral is defined as:

\[ I_4^{D=4-2\epsilon}(m_2^2,m_2^2,m_4^2,m_4^2;t,s;0,m_2^2,0,m_4^2) = \frac{-2}{m_2 m_4 t} \frac{x_s \ln x_s}{1-x_s^2} \left[ \frac{1}{\epsilon} + \ln \left( \frac{\mu^2}{-t} \right) \right],\, s-(m_2-m_4)^2 \neq 0 \\ = \frac{1}{m_2 m_4 t} \left[ \frac{1}{\epsilon} + \ln \left( \frac{\mu^2}{-t} \right) \right], s-(m_2-m_4)^2 = 0. \]

Implementation of the formulae from Beenakker et al. [1].

Parameters
resoutput object res[0,1,2] the coefficients in the Laurent series
mu2the energy scale squared.
template<typename TOutput , typename TMass , typename TScale >
void ql::Box< TOutput, TMass, TScale >::B15 ( vector< TOutput > &  res,
TMass const (&)  Y[4][4],
TScale const &  mu2 
) const

Divergent box I(m2,p2,p3,m4;s12,s23;0,m2,0,m4)

The integral is defined as:

\[ I_4^{D=4-2\epsilon}(m_2^2,p_2^2,p_3^2,m_4^2;t,s;0,m_2^2,0,m_4^2) = \\ \frac{x_s}{m_2 m_4 t (1-x_s^2)} \left\{ \ln x_s \left[ -\frac{1}{\epsilon} - \frac{1}{2} \ln x_s - \ln \left( \frac{\mu^2}{m_2 m_4} \right) - \ln \left( \frac{m_2^2-p_2^2}{-t} \right) - \ln \left( \frac{m_4^2-p_3^2}{-t} \right) \right] \\ - {\rm Li}_2 (1-x_s^2) + \frac{1}{2} ln^2 y + \sum_{\rho=\pm1} {\rm Li}_2 (1-x_s y^\rho) \right\} \]

Implementation of the formulae from Beenakker et al. [1].

Parameters
resoutput object res[0,1,2] the coefficients in the Laurent series
mu2the energy scale squared.
template<typename TOutput , typename TMass , typename TScale >
void ql::Box< TOutput, TMass, TScale >::B16 ( vector< TOutput > &  res,
TMass const (&)  Y[4][4],
TScale const &  mu2 
) const

Divergent box I(m2,p2,p3,m4;s12,s23;0,m2,m3,m4)

The integral is defined as:

\[ I_4^{D=4-2\epsilon}(m_2^2,p_2^2,p_3^2,m_4^2;t,s;0,m_2^2,m_3^2,m_4^2) = frac{x_s}{m_2 m_4 (t-m_3^2)(t-x_s^2)} \\ \left\{ - \frac{\ln x_s}{ \epsilon} - 2 \ln x_s \ln \left( \frac{m_3 \mu}{m_3^2-t} \right) + \ln^2 x_2 + \ln^2 x_3 - {\rm Li}_2 (1-x_s^2) \\ {\rm Li}_2 (1-x_s x_2 x_3) + {\rm Li}_2 \left( 1- \frac{x_s}{x_2 x_3} \right) + {\rm Li}_2 \left( 1- \frac{x_s x_2}{x_3} \right) + {\rm Li}_2 \left( 1- \frac{x_s x_3}{x_2} \right) \right\} \]

Implementation of the formulae from Beenakker et al. [1].

Parameters
resoutput object res[0,1,2] the coefficients in the Laurent series
mu2the energy scale squared.
template<typename TOutput , typename TMass , typename TScale >
void ql::Box< TOutput, TMass, TScale >::B2 ( vector< TOutput > &  res,
TMass const (&)  Y[4][4],
TScale const &  mu2 
) const

Divergent box I(0,0,0,p2;s12,s23;0,0,0,0)

The integral is defined as:

\[ I_4^{D=4-2\epsilon}(0,0,0,p_4^2;s_{12},s_{23};0,0,0,0) = \frac{\mu^{2\epsilon}}{s_{12}s_{23}}\left[ \frac{2}{\epsilon^2}\left( (-s_{12})^{-\epsilon} + (-s_{23})^{-\epsilon} -(-p_4^2)^{-\epsilon} \right) - 2 {\rm Li}_2 \left( 1-\frac{p_4^2}{s_{12}} \right) - 2 {\rm Li}_2 \left( 1-\frac{p_4^2}{s_{23}} \right) - \ln^2 \left( \frac{-s_{12}}{-s_{23}} \right) - \frac{\pi^2}{3} \right] + \mathcal{O}(\epsilon) \]

Implementation of the formulae from Bern et al. [4].

Parameters
resoutput object res[0,1,2] the coefficients in the Laurent series
mu2the energy scale squared.
template<typename TOutput , typename TMass , typename TScale >
void ql::Box< TOutput, TMass, TScale >::B3 ( vector< TOutput > &  res,
TMass const (&)  Y[4][4],
TScale const &  mu2 
) const

Divergent box I(0,pd2,0,pq2;s12,s23;0,0,0,0)

The integral is defined as:

\[ I_4^{D=4-2\epsilon}(0,p_2^2,0,p_4^2;s_{12},s_{23};0,0,0,0) = \frac{\mu^{2\epsilon}}{s_{12}s_{23}-p_4^2 p_2^2} \\ \left[ \frac{2}{\epsilon^2}\left( (-s_{12})^{-\epsilon} + (-s_{23})^{-\epsilon}-(-p_2^2)^{-\epsilon}-(-p_4^2)^{-\epsilon} \right) \\ - 2 {\rm Li}_2 \left( 1-\frac{p_2^2}{s_{12}} \right) - 2 {\rm Li}_2 \left( 1-\frac{p_2^2}{s_{23}} \right) - 2 {\rm Li}_2 \left( 1-\frac{p_4^2}{s_{12}} \right) - 2 {\rm Li}_2 \left( 1-\frac{p_4^2}{s_{23}} \right) \\ + 2 {\rm Li}_2 \left( 1-\frac{p_4^2 p_2^2}{s_{23}s_{12}} \right) - \ln^2 \left( \frac{-s_{12}}{-s_{23}} \right) \right] + \mathcal{O}(\epsilon) \]

Implementation of the formulae from Bern et al. [4].

Parameters
resoutput object res[0,1,2] the coefficients in the Laurent series
mu2the energy scale squared.
template<typename TOutput , typename TMass , typename TScale >
void ql::Box< TOutput, TMass, TScale >::B4 ( vector< TOutput > &  res,
TMass const (&)  Y[4][4],
TScale const &  mu2 
) const

Divergent box I(0,0,pt2,pq2;s12,s23;0,0,0,0)

The integral is defined as:

\[ I_4^{D=4-2\epsilon}(0,0,p_3^2,p_4^2;s_{12},s_{23};0,0,0,0) = \frac{\mu^{2\epsilon}}{s_{12}s_{23}} \\ \left[ \frac{2}{\epsilon^2}\left( (-s_{12})^{-\epsilon} + (-s_{23})^{-\epsilon}-(-p_3^2)^{-\epsilon}-(-p_4^2)^{-\epsilon} \right) + \frac{1}{\epsilon^2} \left( (-p_3^2)^{-\epsilon}(-p_4)^{-\epsilon} \right) / (-s_{12})^{-\epsilon} \\ - 2 {\rm Li}_2 \left( 1-\frac{p_3^2}{s_{23}} \right) - 2 {\rm Li}_2 \left( 1-\frac{p_4^2}{s_{23}} \right) - \ln^2 \left( \frac{-s_{12}}{-s_{23}} \right) \right] + \mathcal{O}(\epsilon) \]

Implementation of the formulae from Bern et al. [4].

Parameters
resoutput object res[0,1,2] the coefficients in the Laurent series
mu2the energy scale squared.
template<typename TOutput , typename TMass , typename TScale >
void ql::Box< TOutput, TMass, TScale >::B5 ( vector< TOutput > &  res,
TMass const (&)  Y[4][4],
TScale const &  mu2 
) const

Divergent box I(0,pd2,pt2,pq2;s12,s23;0,0,0,0)

The integral is defined as:

\[ I_4^{D=4-2\epsilon}(0,p_2^2,p_3^2,p_4^2;s_{12},s_{23};0,0,0,0) = \frac{\mu^{2\epsilon}}{s_{12}s_{23}-p_2^2 p_4^2} \\ \left[ \frac{2}{\epsilon^2}\left( (-s_{12})^{-\epsilon} + (-s_{23})^{-\epsilon}-(-p_2^2)^{-\epsilon}-(-p_3^2)^{-\epsilon} -(-p_4^2)^{-\epsilon} \right) \\ + \frac{1}{\epsilon^2} \left( (-p_2^2)^{-\epsilon}(-p_3)^{-\epsilon} \right) / (-s_{23})^{-\epsilon}+ \frac{1}{\epsilon^2} \left( (-p_3^2)^{-\epsilon}(-p_4)^{-\epsilon} \right) / (-s_{12})^{-\epsilon} \\ - 2 {\rm Li}_2 \left( 1-\frac{p_2^2}{s_{12}} \right) - 2 {\rm Li}_2 \left( 1-\frac{p_4^2}{s_{23}} \right) + 2 {\rm Li}_2 \left( 1-\frac{p_2^2 p_4^2}{s_{12} s_{23}} \right) - \ln^2 \left( \frac{-s_{12}}{-s_{23}} \right) \right] + \mathcal{O}(\epsilon) \]

Implementation of the formulae from Bern et al. [4].

Parameters
resoutput object res[0,1,2] the coefficients in the Laurent series
mu2the energy scale squared.
template<typename TOutput , typename TMass , typename TScale >
void ql::Box< TOutput, TMass, TScale >::B6 ( vector< TOutput > &  res,
TMass const (&)  Y[4][4],
TScale const &  mu2 
) const

Divergent box I(0,0,m2,m2;s12,s23;0,0,0,m2)

The integral is defined as:

\[ I_4^{D=4-2\epsilon}(0,0,m^2,m^2;s_{12},s_{23};0,0,0,m^2) = -\frac{1}{s_{12} (m^2-s_{23})} \left( \frac{\mu^2}{m^2} \right)^\epsilon \\ \left[ \frac{2}{\epsilon^2} - \frac{1}{\epsilon} \left( 2 \ln \left( \frac{m^2-s_{23}}{m^2} \right) + \ln \left( \frac{-s_{12}}{m^2} \right) \right) + 2 \ln \left( \frac{m^2-s_{23}}{m^2} \right) \ln \left( \frac{-s_{12}}{m^2} \right) - \frac{\pi^2}{2} \right] + \mathcal{O}(\epsilon) \]

Implementation of the formulae from Beenakker et al. [2].

Parameters
resoutput object res[0,1,2] the coefficients in the Laurent series
mu2the energy scale squared.
template<typename TOutput , typename TMass , typename TScale >
void ql::Box< TOutput, TMass, TScale >::B7 ( vector< TOutput > &  res,
TMass const (&)  Y[4][4],
TScale const &  mu2 
) const

Divergent box I(0,0,m2,pq2;s12,s23;0,0,0,m2)

The integral is defined as:

\[ I_4^{D=4-2\epsilon}(0,0,m^2,p_2^2;s_{12},s_{23};0,0,0,m^2) = \left( \frac{\mu^2}{m^2} \right)^\epsilon \frac{1}{s_{12} (s_{23}-m^2)} \\ \left[ \frac{3}{2 \epsilon^2} - \frac{1}{\epsilon} \left\{ 2 \ln \left( 1-\frac{s_{23}}{m^2} \right) + \ln \left( \frac{-s_{12}}{m^2} \right) - \ln \left( 1-\frac{p_4^2}{m^2} \right) \right\} \\ -2 {\rm Li}_2 \left( 1 - \frac{m^2-p_4^2}{m^2-s_{23}} \right) + 2 \ln \left( \frac{-s_{12}}{m^2} \right) \ln \left( 1-\frac{s_{23}}{m^2} \right) - \ln^2 \left( 1 - \frac{p_4^2}{m^2} \right) -\frac{5\pi^2}{12} \right] + \mathcal{O}(\epsilon) \]

Implementation of the formulae from Beenakker et al. [2].

Parameters
resoutput object res[0,1,2] the coefficients in the Laurent series
mu2the energy scale squared.
template<typename TOutput , typename TMass , typename TScale >
void ql::Box< TOutput, TMass, TScale >::B8 ( vector< TOutput > &  res,
TMass const (&)  Y[4][4],
TScale const &  mu2 
) const

Divergent box I(0,0,pt2,pq2;s12,s23;0,0,0,m2)

The integral is defined as:

\[ I_4^{D=4-2\epsilon}(0,0,p_3^2,p_4^2;s_{12},s_{23};0,0,0,m^2) = \frac{1}{s_{12} (s_{23}-m^2)} \left[ \frac{1}{\epsilon^2} - \frac{1}{\epsilon} \left[ \ln \frac{-s_{12}}{\mu^2} + \ln \frac{(m^2-s_{23}^2)}{(m^2-p_3^2)(m^2-p_4^2)} \right] \\ - 2 {\rm Li}_2 \left( 1 - \frac{m^2-p_3^2}{m^2-s_{23}} \right) - 2 {\rm Li}_2 \left( 1-\frac{m^2-p_4^2}{m^2-s_{23}} \right) - {\rm Li}_2 \left( 1 + \frac{(m^2-p_3^2)(m^2-p_4^2)}{s_{12} m^2} \right) \\ - \frac{\pi^2}{6} + \frac{1}{2} \ln^2 \left( \frac{-s_{12}}{\mu^2} \right) - \frac{1}{2} \ln^2 \left( \frac{-s_{12}}{m^2} \right) + 2 \ln \left( \frac{-s_{12}}{\mu^2} \right) \ln \left( \frac{m^2-s_{23}}{m^2} \right) \\ - \ln \left( \frac{m^2-p_3^2}{\mu^2} \right) \ln \left( \frac{m^2-p_3^2}{m^2} \right) - \ln \left( \frac{m^2-p_4^2}{\mu^2} \right) \ln \left( \frac{m^2-p_4^2}{m^2} \right) \right] + \mathcal{O}(\epsilon) \]

Implementation of the formulae from Beenakker et al. [2].

Parameters
resoutput object res[0,1,2] the coefficients in the Laurent series
mu2the energy scale squared.
template<typename TOutput , typename TMass , typename TScale >
void ql::Box< TOutput, TMass, TScale >::B9 ( vector< TOutput > &  res,
TMass const (&)  Y[4][4],
TScale const &  mu2 
) const

Divergent box I(0,p2,p3,m2;s12,s23;0,0,0,m2)

The integral is defined as:

\[ I_4^{D=4-2\epsilon}(0,p_2^2,p_3^2,m^2;s_{12},s_{23};0,0,0,m^2) = \frac{1}{s_{12} (s_{23}-m^2)} \left[ \frac{1}{2 \epsilon^2} - \frac{1}{\epsilon} \left( \frac{s_{12} (m^2-s_{23})}{p_2^2 \mu m} \right) \\ + {\rm Li}_2 \left(1+\frac{(m^2-p_3^2)(m^2-s_{23})}{m^2 p_2^2} \right) + 2 {\rm Li}_2 \left( 1-\frac{s_{12}}{p_2^2} \right) + \frac{\pi^2}{12} + \ln^2 \left( \frac{s_{12}(m^2-s_{23})}{p_2^2 \mu m} \right) \right] + \mathcal{O}(\epsilon) \]

Implementation of the formulae from Ellis et al. [8].

Parameters
resoutput object res[0,1,2] the coefficients in the Laurent series
mu2the energy scale squared.
template<typename TOutput , typename TMass , typename TScale >
void ql::Box< TOutput, TMass, TScale >::integral ( vector< TOutput > &  res,
TScale const &  mu2,
vector< TMass > const &  m,
vector< TScale > const &  p 
)
virtual

Computes the tadpole integral.

Computes the Box integral defined as:

\[ I_{4}^{D}(p_1^2,p_2^2,p_3^2,p_4^2;s_{12},s_{23};m_1^2,m_2^2,m_3^2,m_4^2)= \frac{\mu^{4-D}}{i \pi^{D/2} r_{\Gamma}} \int d^Dl \frac{1}{(l^2-m_1^2+i \epsilon)((l+q_1)^2-m_2^2+i \epsilon)((l+q_2)^2-m_3^2+i\epsilon)((l+q_4)^2-m_4^2+i\epsilon)} \]

where \( q_1=p_1, q_2=p_1+p_2, q_3=p_1+p_2+p_3\) and \(q_0=q_4=0\).

Implementation of the formulae of Denner et al. [6], 't Hooft and Veltman [9], Bern et al. [4].

Parameters
resoutput object res[0,1,2] the coefficients in the Laurent series
mu2is the square of the scale mu
mare the squares of the masses of the internal lines
pare the four-momentum squared of the external lines

Implements ql::Topology< TOutput, TMass, TScale >.


The documentation for this class was generated from the following files: